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Abstract. Stationary states in KPZ-type growth have interesting short distance properties. We
find that typically they are skewed and lack particle-hole symmetry. For example, hill-tops are
typically flatter than valley-bottoms, and all odd moments of the height distribution function
are non-zero. Stationary-state skewness can be turned on and off in the(1+ 1)-dimensional
restricted solid-on-solid (RSOS) model. We construct the exact stationary state for its master
equation in a four-dimensional parameter space. In this state steps are completely uncorrelated.
Familiar models such as the Kim–Kosterlitz model lie outside this space, and their stationary
states are skewed. We demonstrate using finite size scaling that the skewness diverges with
systems size, but such that the skewness operator is irrelevant in(1+ 1) dimensions, with an
exponentysk ' −1, and that the KPZ fixed point lies at zero-skewness.

1. Introduction

Crystal surfaces display interesting scaling properties during growth. One of the dynamic
processes that has been at the centre of attention is the so-called KPZ-type growth, named
after the Langevin equation

dh

dt
= v0+ ν∇2h+ 1

2λ(∇h)2+ η (1.1a)

with uncorrelated Gaussian noise

〈η(r1, t1)η(r2, t2)〉 = 2Dδ(r1− r2)δ(t1− t2) (1.1b)

studied by Kardaret al [1]. The growth rate,v0, is modified by the local curvature of
the surface (theν-term), its local slope (theλ-term), and random fluctuations (theη-
term). It is well established by now that many microscopic growth processes belong to
the KPZ universality class [2–5]. Such microscopic models have been investigated by
numerous Monte Carlo (MC) simulations and finite size scaling (FSS) studies using exact
diagonalization of master equations. Moreover, at least one model is exactly soluble in
(1+ 1) dimensions(D = 1) [6–9]. The exact stationary state for several solid-on-solid
models has been found as well [10–13]. Intriguing relations with different aspects of
physics have been established. Equation (1.1) is equivalent to the Burgers equation for
randomly stirred fluids (∇h represents the fluid velocity) [14]. KPZ growth maps onto
the directed polymer problem [15, 5], and relates to equilibrium liquid crystal phases [16].
In one dimension (1D) it describes persistent currents in metal rings in the context of
asymmetric exclusion models [10, 11, 17–19], and is also equivalent to the equilibrium
statistical mechanics at facet-ridge endpoints in two dimensional (2D) crystals [17].

The scaling properties of KPZ-type growth have been established, but our understanding
is not yet at the level we would like. It is useful to make a comparison with equilibrium
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critical phenomena. Master equations for microscopic models, such as the body-centred
solid-on-solid (BCSOS) model and the restricted solid-on-solid (RSOS) model, play a
similar role as Ising-type microscopic models in equilibrium critical phenomena. KPZ-
type Langevin equations play a similar role asφ4-type field theories. There are roughly
three levels at which a particular type of scaling invariance can be understood. The first
level is to establish empirically (experimentally and numerically) the existence of scale
invariance and universality. For equilibrium critical phenomena this was achieved in the
early 1970s, for KPZ-type growth only a few years ago.

The second level is to obtain analytical confirmation of the empirical scaling properties.
Exactly soluble models confirm the empirical scaling properties of 2D equilibrium critical
phenomena. Mean-field approximations and Landau–Ginzburg theory yield the existence
of an upper critical dimension and makes it possible to carry out controlled renormalization
transformations that demonstrate the existence of the Ising fixed point inφ4 theory. For
KPZ-type growth, we have only reached this level in 1D. The BCSOS growth model is
exactly soluble in 1D. The KPZ fixed point in general dimension (D) has eluded us thus
far. The existence of an upper critical dimension is yet unclear. Theε-expansion analysis
of equation (1.1) [1, 14, 20] describes the reversal of the stability of Edwards–Wilkinson
(EW) growth (the pointλ = 0) with respect toλ atD = 2. It does not yield a fixed point
for the KPZ universality class, except a strong-coupling one in 1D.

The third level is to express the scaling properties in terms of a free-field theory. In
general this is not possible at all. However, for 2D equilibrium critical phenomena such
a description emerged during the last 15 yr. Coulomb gas representations [21, 22] and
conformal field theory [23] provide a full free-field theory description of virtually all 2D
equilibrium phase transitions. There is no assurance that this can be generalized to dynamic
processes in 1D, but we have a good chance since the time-evolution operators of master
equations in(1+1) dimensions closely resemble transfer matrices of 2D equilibrium critical
phenomena. Generalizations of conformal invariance are being considered [24, 25], but it
is too early to tell whether this will work.

In this paper we present a master equation study of a generalized RSOS growth model.
In this model, nearest-neighbour columns of particles can only differ bydh = 0,±1. We
consider the most general growth rule involving only nearest-neighbour step configurations.
This gives rise to a five-dimensional (5D) phase diagram. We address four issues: (a) we
describe the global structure of this phase diagram; (b) we derive the exact analytic form of
the stationary state in a four-dimensional (4D) subspace; (c) we point out that the stationary
state is generically skewed; and (d) we investigate whether stationary state skewness scales
in accordance with conventional renormalization theory and the concept of universality.

Somehow, stationary-state skewness seems to have escaped everyone’s attention thus
far. The only discussions of skewness in the literature of which we are aware, concern
temporal skewness [26–28, 5]. One possible reason is that almost all previous studies
involve MC-type simulations. In master equation studies, like ours, the stationary state and
its properties are directly accessible (as the eigenvector of the largest eigenvalue of the time
evolution operator). Consider the moments of the height distribution,hx(t), at a certain
moment in time, in a finite 1D system with periodic boundary conditions,hx+L(t) = hx(t),

Wn(L, t) = L−1
∫

dx [hx(t)− hav(t)]n. (1.2)

The first moment vanishes since it defines the average surface heighthav(t) . The second
moment is the conventional measure for the width of the interface. The third moment
characterizes the skewness. In EW-type growth all odd moments vanish because of particle-
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Figure 1. Temporal skewness in the deterministic KPZ equation. Time evolution of a sinusoidal
initial state.

hole symmetry atλ = 0. KPZ-type growth lacks that symmetry. On a local level, skewness
means that the curvature at a typical valley-bottom is larger in magnitude than at a typical
hill-top (or the other way around); figure 1 illustrates this. It shows the deterministic time
evolution of a sinusoid initial state, according to equation (1.1) without noise for positive
λ.

It is important to distinguish between stationary-state skewness and temporal skewness.
The skewness in figure 1 for the deterministic KPZ equation is a transient phenomenon. This
initial state decays to zero, to a stationary state with no skewness whatsoever. Noise pumps
sinusoid waves at random frequencies into the surface (from the spatial Fourier transformed
perspective) at all time scales. Each mode decays with the same sign for skewness. So
in the presence of random noise the stationary state tends to be rough and skewed. This
picture is too simplistic. It ignores the nonlinear coupling between the modes. Moreover,
the stationary state of equation (1.1) is known exactly in 1D; it is Gaussian. All moments
Wn for n > 2 vanish [5, 14, 29].

The BCSOS model is one of the simplest microscopic KPZ-type growth rules [30, 31],
and it is exactly soluble in 1D [6–9]. Its stationary state is trivial as well. It is the
completely disordered state, without any skewness (or any other structure), not only in the
thermodynamic limit but also for all finiteL. The origin of this is a special symmetry of
the time-evolution operator; we review this in section 2. Throughout this paper we will
compare our results for the RSOS model with the properties of the BCSOS model.

Our study of the RSOS model illustrates that the simplicity of the stationary states
of equation (1.1) and the BCSOS model is accidental. Generically, stationary states are
skewed. Skewness can be turned on and off in the RSOS model. In section 3, we derive
the exact form of its stationary state in a 4D subspace. This stationary state is simple—
skewness and all other correlations between steps in the surface are absent. Steps are placed
at random, with not even nearest-neighbour correlations between them. The only parameter
is the step density. Familiar special points, such as the Kim–Kosterlitz (KK) model [32],
and special lines [33] lie outside this subspace. Their stationary states are non-trivial and
stationary state skewness is one aspect of this.
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In section 4, we present a mean-field-type derivation of the deterministic part of the
KPZ equation for the BCSOS and RSOS models. This derivation provides more insight
into the general structure of the RSOS model phase diagram. In particular, it identifies a
second order parameter, the step density, and a typical time scale,τs . The step density
(re-)equilibrates locally at a time scaleτs . The RSOS model is described by the KPZ
equation only at time resolutions less thanτs . In section 5, we combine these results into a
description of the global structure of the RSOS model phase diagram. We also describe how
skewness can be introduced and controlled within the Langevin equation, equation (1.1).

Stationary-state skewness raises an important fundamental level-two-type issue. One
of the basic premises of renormalization theory is that all short-distance complexities are
expressible in terms of irrelevant operators. Stationary-state skewness should be an example
of this. It is important to demonstrate this explicitly, since level-two-type understanding
of KPZ-type growth is still rudimentary. According to the empirical scaling theory, the
growing interface displays scale invariance at large length scales and long times. It is
invariant under the transformation:x ′ = bx, h′ = bαh, and t ′ = bzt . The moments of the
height distribution scale as

Wn(L, t) = bnαWn(b
−1L, b−zt) (1.3)

α is the stationary-state roughness exponent andz the dynamic exponent. Galilean
invariance in the Burgers equation representation of equation (1.1) yields the identity
α + z = 2 [1–5, 14]. In 1D the height variable scales with the exponentα = 1

2. The
width squared of the surface,W2, diverges linearly withL in the stationary state. The
step–step correlation function

Gs(r) = 〈∇hx+r∇hx〉 ∼ exp(−r/ξs) (1.4)

has a finite correlation length, or at least decays fast enough that going up and down along
the surface becomes a random walk at large length scales. It is unlikely that KPZ-type
models with stationary state skewness belong to a different universality as those without it.
The numerical evidence forz = 1.5 is very strong, in particular at the KK point. But, are
they all described by the same fixed point?

The conventional KPZ fixed point lies at zero skewness. It applies to equation (1.1),
to the BCSOS model, and also to the RSOS model inside the non-skewed 4D subspace.
This fixed point describes skewed surfaces as well, if we can demonstrate that the skewness
crossover operator is irrelevant in the sense of the renormalization theory. This does not
mean that aspects such as skewness vanish in the thermodynamic limit. Skewness,W3, is
allowed to diverge with system size, but at a slower rate than its naive exponent, 3α. In
section 5 we show numerically, using a master equation finite size scaling analysis, that
the skewness in the RSOS model diverges in the thermodynamic limit asW3 ∼ Nx , with
x ' 0.5. This confirms that the KPZ fixed point lies at zero skewness. The skewness
crossover scaling exponent is equal toysk ' −1.

2. The stationary state in the BCSOS model

The stationary state of the BCSOS growth model is simple. It is the completely disordered
state. This is a consequence of the symmetry properties of the master equation. First we
review these symmetries and then rederive the stationary state by a more complex method,
one that can be generalized to the RSOS model in section 3.

Consider a surface built from rectangular shaped bricks (a conventional brick wall turned
over 90◦). The surface heights atx = 2n+ 1

2 are even integers and those atx = 2n− 1
2 are
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odd. Nearest-neighbour columns differ in height by one unit. Each bondx = n contains a
stepSn = ±1. The growth rule is as follows: Choose one of the columns at random. If this
column is at the bottom of a local valley,Sn−1 = −1 andSn = +1, a particle adsorbs with
probabilityp (and nothing happens with probability 1−p). If it is at the top of a local hill,
Sn−1 = +1 andSn = −1, a particle desorbs with probabilityq (and nothing happens with
probability 1− q). If it is part of a local slope,Sn−1 = Sn, nothing happens. This model
has been studied extensively in the literature, first by Monte Carlo simulations [30, 3], more
recently it was realized it can be solved exactly [6–9].

The master equation

|9〉t+1 = T |9〉t (2.1)

describes the time evolution of the probability distributionc({Sn})
|9〉 =

∑
{Szn}

c({Szn}) |{Szn}〉. (2.2)

The time-evolution operator has the familiar form

T = 1−N−1
∑
n

H(n, n+ 1) (2.3)

butH is not Hermitian.

H(n, n+ 1) = 1
4ε[1− SznSzn+1− 2(S+n S

−
n+1+ S−n S+n+1)− 2s(S+n S

−
n+1− S−n S+n+1)] (2.4)

with s = (p−q)/(p+q), and periodic boundary conditions,Szn+N = Szn. T must be applied
N times to evolve the system by one unit of time. Without loss of generality we can set
ε = p + q = 1.

At s = 0,H is identical to the Hamiltonian of the so-calledXXZ quantum spin-12 chain.
For any value ofs the model is equivalent to the 2D equilibrium six-vertex model in an
electric fields. To be more precise, the time-evolution operator is identical to the transfer
matrix of the six-vertex model when the sites are being updated sequentially instead of at
random. The master equation reduces to equation (2.3) in the time continuum limit. The
six-vertex model and equation (2.4) are exactly soluble [7, 8, 34–36]. The master equation
follows a special line through the six-vertex model phase diagram, whereT is a stochastic
matrix (T preserves probability). The six-vertex model describes the temperature evolution
of equilibrium crystal surfaces [35]. KPZ-type growth maps onto facet-ridge endpoints
[17, 34], special points in the phase diagram where the rough (chiral-Luttinger liquid) and
faceted phases meet.

The stationary state of equation (2.3) is very simple. It is the disordered state|D〉 where
all coefficientsc({Sn}) are equal. For non-growing surfaces, withp = q, this is obvious.
The dynamic rule is then equivalent to a Monte Carlo process in equilibrium statistical
mechanics. The coefficients of the stationary state are proportional to the equilibrium
Boltzmann weights.|D〉 is the equilibrium state since this 1D BCSOS model lacks any
interactions.
|D〉 is the stationary state for the growing BCSOS surface as well. Stochastic processes

preserve probability. Algebraically, this is expressed by the property that〈D| is the left
eigenvector of the largest eigenvalueλ = 1 for all stochastic time evolution operators. In
general, the adjoint of a time evolution operator is not stochastic, but for the BCSOS model
it is. T † describes the same growth process, but with the role of particles and holes reversed.
The left and right eigenvectors switch roles, and therefore|D〉 is the right eigenvector for
all s 6= 0. The stationary state is completely disordered.

The fact thatT † is stochastic in the entire phase diagram is an accident. It is also an
accident thatT † is identical to the particle-hole transformed time-evolution operator. We
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will see this more clearly in section 3 during the discussion of the RSOS model. For that
model we will be able to generalize the following method to derive the stationary state.

The BCSOS model can be interpreted as a model for (classical) particles hopping along
a chain in an electric field.Szn = 1 represents an occupied site andSzn = −1 an empty
site. This is also known as the asymmetric exclusion model [10]. Consider the probability
c({Sn}) to be in microstate{Sn}. Let the dots inc(. . . , Szn, S

z
n+1, . . .) mean that all spins

other than those at sitesn andn+1 are the same for all states considered and do not change.
The action of each individualH(n, n+ 1),

c(. . . ,+,−, . . .)t+1/N = (1− q)c(. . . ,+,−, . . .)t + pc(. . . ,−,+, . . .)t (2.5)

leaves|9〉 invariant when

c(. . . ,+,−, . . .)
c(. . . ,−,+, . . .) =

p

q
. (2.6)

The electrostatic energy of charged particles hopping along a wire in an electric fieldE is
equal toEK, with

K =
∑
n

1
2n(S

z
n + 1). (2.7)

A conventional MC simulation rule for such a system obeys detailed balance, in which the
transition probabilities between statesa andb are related as

Pa→b
Pb→a

= exp(−E(Kb −Ka)/kBT ). (2.8)

This is precisely the content of equation (2.6). The stationary state is the ‘atmospheric law’
density distribution:

ρ(n) = exp(−En/kBT ) (2.9)

andp/q = exp(E/kBT ). This is not the solution we are looking for; it applies to the wrong
boundary conditions. Equation (2.9) is valid for open boundary conditions. In our case
the particles keep running around in a circle and no density profile can build up to stop
this flow. The detailed balance approach is apparently too restrictive. We must attack the
problem less locally.

The following property will prove essential. The number of hill-tops and valley-bottoms
is the same in every configuration [2]. This is easily established by drawing a typical
configuration with periodic boundary conditions and a specific average slope. Algebraically
it can be shown as follows. Consider the four nearest-neighbour step–step densities in each
configuration: d+−, d−+, d++, andd−−. They represent respectively, the density of hill-
tops, valley-bottoms, and up and down slopes. The density of up-spins,d+, is related by
normalization as

d+ = d++ + d−+ = d++ + d+−. (2.10)

This implies thatd+− = d−+.
Let us test the following assumption: The probability distributionc({Sn}) depends only

on the total number of particles,N , and the total electrostatic energyK. The average
slope of the surface is fixed by the boundary conditions. ThereforeN is a constant of
motion and can be ignored. This leaves only the dependence on the electrostatic energy,
c({Sn}) = c(K). This probability distribution time evolves according to equation (2.3) as

∂c(K)
∂t
= −(pd−+ + qd+−)c(K)+ pd+−c(K + 1)+ qd−+c(K − 1). (2.11)
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The first term on the right-hand side represents the contributions when nothing happens
betweent → t + 1/N . The second and third terms represent events where one particle
adsorbs or evaporates. Adsorption destroys one valley-bottom and creates one hill-top.
Evaporation does the opposite. The adsorption probability is proportional tod+− since
this could have happened to any of the hill-tops in existence at timet + 1/N . It is also
proportional toC(K+1), because in the electric-field interpretation one particle hops in the
direction of the electric field.

Our assumption for the stationary state is correct if the right-hand side of equation (2.11)
vanishes for alldi,j . This seems to imply two conditions, but there is only one, sinced−+
can be eliminated using the identityd−+ = d+−. The right-hand side vanishes for all
configurations if

p + q = p/w + qw (2.12)

with w = c(K)/c(K + 1). This yields two stationary state solutions: the detailed balance
solution withw = p/q, and the stationary growing state solution|D〉 with w = 1, the state
we are looking for.

Without the global identityd−+ = d+−, equation (2.10) would yield two conditions, one
for d−+ and one ford+−. These reproduce only the detailed balance solution. The stationary
growth solution withw = 1 is the result of the non-local property that there are just as many
valley-bottoms as hill-tops. Every hill-top (valley bottom) could have been created during
t → t+1/N with probabilityp(q) and every valley-bottom (hill-top) can be destroyed with
the same probability. Sinced−+ = d+−, the right-hand side of equation (2.11) vanishes
when the coefficientsc(K) are independent ofK.

3. The stationary state in the RSOS model

The RSOS growth model describes the growth of simple cubic surfaces in which only
monatomic steps are allowed. Nearest-neighbour columns can differ by onlydh = Szn =
0,±1. The master equation is more complex than equation (2.3) for the BCSOS model, since
more types of local configurations are possible. Each has its own transition probabilities.
After choosing one of the columns at random, one particle can be evaporated or deposited
at x = n + 1

2 with a probability that depends on the height differencesSzn andSzn+1. The
time-evolution operator is again in the form of equation (2.3) with

H =
∑
n=1,N

{[ph(1− S+n S−n+1)+ qv(1− S−n S+n+1)]δ(0)nδ(0)n+1

+qh(1− S−n S+n+1)δ(+)nδ(−)n+1+ pv(1− S+n S−n+1)δ(−)nδ(+)n+1

+ps(1− S+n S−n+1)[δ(0)nδ(+)n+1+ δ(−)nδ(0)n+1]

+qs(1− S−n S+n+1)[δ(+)nδ(0)n+1+ δ(0)nδ(−)n+1]} (3.1)

and the following definitions: δ(0) = (1 + Sz)(1 − Sz), δ(+) = 1
2S

z(Sz + 1), and
δ(−) = 1

2S
z(Sz − 1). The raising and lowering operatorsS+ andS− are normalized such

thatSz = S+S− − S−S+ andS+S− + S−S+ = 2− (Sz)2. This time-evolution operator has
six parameters. They have the following interpretations:ph is the adsorption probability
andqv is the evaporation probability when the surface is locally flat;qh is the evaporation
probability at a local hill-top;pv is the adsorption probability into a local valley-bottom;ps
is the adsorption probability andqs the evaporation probability at a step. These transition
rates are demonstrated in figure 2.
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Figure 2. RSOS growth parameters. Sketch of representative surface configurations and their
transition rates.

H is not Hermitian, but resembles the Hamiltonian of a quantum spin-1 chain.

HD(n, n+ 1) = cs + (sm − 2cs)(S
z
n)

2− 1
4asS

z
nS

z
n+1+ (cs − sm + 1

4as)(S
z
nS

z
n+1)

2

+( 1
2sd − 1

4hg)S
z
nS

z
n+1(S

z
n+1− Szn) (3.2a)

the diagonal part, and

HOD(n, n+ 1) = −F+S+n S−n+1− F−S−n S+n+1 (3.2b)

the off-diagonal part, with

F+ = (ph − ps)(SznSzn+1)
2+ (pv − ps)[1− (Szn)2][1 − (Szn+1)

2] + ps
F− = (qv − qs)(SznSzn+1)

2+ (qh − qs)[1− (Szn)2][1 − (Szn+1)
2] + qs.

(3.2c)

In HD we introduced a second notation for the six parameters:cs = ph + qv is the step
creation probability;as = pv + qh is the step annihilation probability;sm = ps + qs is the
step mobility;fg = ph − qv is the growth probability at flat surface areas;hg = pv − qh is
the growth probability at hill-tops and valleys; andsd = ps − qs is the growth probability
at steps (step drift).

The phase diagram is only 5D because rescaling all six parameters by a common factor
redefines the unit of time. Some familiar models are contained in this master equation
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as special points or lines [32, 33]. For example, the KK model [32] corresponds to
qv = qh = qs = 0 (no evaporation) andpv = ph = ps .

Recall (see section 2) that the stationary state of the BCSOS model, equation (2.4), is
trivial. It is the completely disordered state|D〉, because the adjoint of its time-evolution
operator it also stochastic. It describes the time evolution of the same surface in the
particle-hole transformed representation. The adjoint of equation (3.1) is only stochastic in
a three-dimensional (3D) subspace of the phase diagram. The diagonal parts ofT † andT
are identical, but the coefficients in the off-diagonal part switch position,

T (cs, as, sm; fg, hg, sd)† = TD(cs, as, sm; fg, hg, sd)+ TOD(as, cs, sm;−hg,−fg,−sd).
(3.3)

The parameter space in whichT † preserves probability is larger than the 2D self-adjoint
subspace in which the surface does not grow (ph = qh, pv = qv, and ps = qs). T †
is stochastic whenever the diagonal partTD in equation (3.3), is invariant under the
transformationcs ↔ as , hg ↔ −fg, and sd → −sd (the way the parameters switch in
the off-diagonal part). This is true for

cs = as hg − 2sd = −fg + 2sd . (3.4)

Inside this 3D subspace the adjoint of the time-evolution operator is stochastic and describes
surfaces in which the probabilities are interchanged as

T (cs, as, sm; fg, hg, sd)† = T (as, cs, sm;−hg,−fg,−sd). (3.5)

In the BCSOS model,T † is identical to the particle-hole transformed dynamics. This is not
true any more in the RSOS model; the particle-hole transformed time-evolution operator

ÔPHT (cs, as, sm; fg, hg, sd) = T (cs, as, sm;−fg,−hg,−sd) (3.6)

is different to the one in equation (3.5).
Next, we generalize this stationary state to a 4D subspace. The BCSOS model master

equation describes a lattice gas of non-interacting charged particles in an electric field. The
RSOS master equation is a particle-hole generalization of this. TheSzn = ±1 states represent
sites occupied by particles with electric charge±1. Szn = 0 states represent empty sites.
The energy of such a lattice gas is of the form

E =
∑
n

[µ(Szn)
2+ EnSzn]. (3.7)

The chemical potentialµ is needed, because the dynamic rule does not conserve the total
number of particles (the number of steps in the surface). The chemical potential for the total
charge can be omitted because electric charge is conserved. We are looking for a stationary
state of the formc({Szn}) = c(Ns ,K) in which the coefficients only depend on the number
of particles,Ns and the total electrostatic energy,K =∑n nS

z
n,

c({Szn}) ∼ exp[−µNs − EK] = z 1
2NswK. (3.8)

Let us try the conventional detailed balance approach for Monte Carlo simulations. Require
that the action of each individualHn,n+1 leaves|9〉 invariant. This yields the conditions

qh

ph
= c(. . . ,0, 0, . . .)

c(. . . ,+,−, . . .)
pv

qv
= c(. . . ,0, 0, . . .)

c(. . . ,−,+, . . .)
ps

qs
= c(. . . ,+, 0, . . .)

c(. . . ,0,+, . . .) =
c(. . . ,0,−, . . .)
c(. . . ,−, 0, . . .)

(3.9)
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(using the same type of notation as in equation (2.5)). They are satisfied by the stationary
state in the form of equation (3.8) when

ph/qh = exp[(E − 2µ)/kBT ]

pv/qv = exp[(E + 2µ)/kBT ]

ps/qs = exp[E/kBT ].

(3.10)

This defines a 4D subspace inside the 5D phase diagram, since each set of valuesE andµ
leaves two ratios unspecified,ph/pv andph/ps .

Equation (3.9) is not the stationary state we are interested in. It applies to the wrong type
of boundary condition. Let us apply the same non-local approach as in section 2. Assume
that the stationary state is in the form of equation (3.8) and express the time evolution in
terms of the nine nearest-neighbour step–step densitiesd00, d+−,. . . , d++. The equations
of motion read:
∂c(Ns ,K)

∂t
= −[(ph + qv)d00+ pvd−+ + qhd+−]c(Ns ,K)

+phd+−c(Ns − 2,K + 1)+ qvd−+c(Ns − 2,K − 1)

+qhd00c(Ns + 2,K − 1)+ pvd00c(Ns + 2,K + 1)

+qs(d0+ + d−0)c(Ns ,K − 1)+ ps(d+0+ d0−)c(Ns ,K + 1)

−[ps(d0+ + d−0)+ qs(d+0+ d0−)]c(Ns ,K). (3.11)

This is the generalization of equation (2.11). The stationary state is in the form of
equation (3.8), if the right-hand side vanishes for alldi,j . Naively this yields five equations
with five unknowns. However, thedi,j in equation (3.11) are not independent. The
analogues of equation (2.10) are

d+ = d++ + d+0+ d+− = d++ + d0+ + d−+
d− = d−− + d0− + d+− = d−− + d−0+ d−+

(3.12)

with d+ and d− the density of up- and down-steps, andd0 + d+ + d− = 1. Adding and
subtracting these two equations yields two identities:

2d+− + d+0+ d0− = 2d−+ + d0+ + d−0

d+0− d0− = d0+ − d−0.
(3.13)

After employing the first one, onlyd00, d+−, d−+, andd+0+ d0− remain in equation (3.11).
Equation (3.8) is the correct stationary state if the following four conditions are satisfied:

(ph + qv) = qhzw−1+ pvzw
qh = phz−1w − 2(ps − qsw−1)

pv = qv(zw)−1+ 2(ps − qsw−1)

0= (ps − qsw−1)(1− w).

(3.14)

The last equation indicates that there are two solutions: one withqs/ps = w and one with
w = 1. The first solution, withw = qs/ps , reproduces the atmospheric law-type charge
profile (3.9). The second solution, withw = 1, applies to periodic boundary conditions and
is the one we are looking for. Forw = 1, the last condition in (3.14) is satisfied without
any constraints onps andqs . Only two of the three remaining conditions are independent.
One sets the step density and the other specifies one condition between the five growth
parameters. The stationary state is of the form

c({Szn}) = c(Ns) ∼ exp[−µNs ] = (
√
z)Ns (3.15a)
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inside the 4D subspace defined as

z = ph + qv
qh + pv

0= z(pv − qh)+ (ph − qv)− 4z(ps − qs)
(3.15b)

the latter is equivalent to

z = cs/as
4sdz = zhg + fg.

(3.15c)

Both solutions ofw are valid in a subspace of co-dimension one of the 5D parameter space,
but these subspaces do not coincide, nor do the equations for the step-fugacityz.

In the stationary state (3.15) the step density is equal to

s = 〈D|(Szn)2|9〉 =
2
√
z

1+ 2
√
z

(3.16)

for zero surface tilt,v = 〈D|Szn|S〉 = 0. Notice that forz = 1 we recover the disordered
state solution, equation (3.4).

The stationary growth rate,rg, is equal to

rg = 〈D|(F+S+n S−n+1− F−S−n S+n+1)|9〉
= fg(1− s)2+ 1

4hgs
2+ sds(1− s) (3.17)

which simplifies with equation (3.15c) and (3.16) to

rg = sds. (3.18)

The height–height correlation function diverges linearly because the spins are uncorrelated:

〈D|(hn+ 1
2
− hn+m+ 1

2
)2|9〉 = 〈D|

∑
n<i6n+m

(Szi )
2|9〉 = ms. (3.19)

This confirms that the surface roughness critical exponent is equal toα = 1
2.

It is amazing that the stationary state is this simple in such a large fraction of the phase
diagram. The step–step correlation function, equation (1.4), has a sharp cut-off, to such
an extent that steps are completely disordered. Outside this 4D subspace the stationary
state becomes more complex. Equation (1.4) does not have a sharp cut-off any more. We
checked this numerically. Attempts to extend the above derivation to a form in which the
c({Sn}) are functions only of the nearest-neighbour step–step correlations are doomed. The
number of equations increases rapidly and they cannot be satisfied inside the 5D parameter
space.

4. Mean-field theory and Langevin equations

In this section we apply the mean-field theory to the BCSOS and RSOS model. The mean-
field equations of motion for the order parameters reproduce the deterministic part of the
KPZ equation. This is similar to equilibrium critical phenomena, where mean-field theory
for the Ising model reproduces only the non-fluctuating part of theφ4-theory. The aim is
to improve the understanding of the structure of the 5D RSOS model phase diagram; in
particular, to relate qualitatively the parameters of the RSOS model to those in the KPZ
equation.

Consider the BCSOS master equation, equation (2.4). The equation of motion

∂v

∂t
= vn(t + 1)− vn(t) = 〈D|[Szn, T ]|9〉t (4.1)
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for the local slope of the surface

vn(t) = 〈D|Szn|9〉t (4.2)

does not close because of the presence of nearest-neighbour step–step correlations on the
right-hand side. Define

d(a, b)x = 〈D|δ(Szn − a)δ(Szn+1− b)|9〉 (4.3)

with a, b = ±1 andx = n+ 1
2, and replace the slope variable by the surface height using

the relationvn = hx+1− hx . Equation (4.1) yields,

∂h

∂t
= pd(+,−)x − qd(−,+)x. (4.4)

This is the top of a BBGKY hierarchy of equations of motion. In the lowest-order
approximation all step–step correlation are neglected. Thed(a, b)x are assumed to factorize.
The equation of motion for the average local slopevn(t) then closes.

∂

∂t
hx = 1

4p(1− vn)(1+ vn+1)− 1
4q(1+ vn)(1− vn+1). (4.5)

A faster route to exactly the same equation is to apply the mean-field approximation directly
to the master equation. The adsorption and evaporation transition rates at sitex are assumed
to depend on the expectation values of the step densityvn instead of their actual valuesSzn.
Equation (4.5) is identical to the deterministic part of the KPZ equation, equation (1.1), in
the spatial continuum limit

∂h

∂t
= 1

4
(p − q)+ 1

4
(p + q)∂

2h

∂x2
− 1

4
(p − q)

(
∂h

∂x

)2

(4.6)

λ is negative and reduces the growth rate at slopes. This reflects that in the BCSOS model
sloped surface sections, withSn = Sn+1, are inactive.

We will now apply the same type of approximation to the RSOS model. The first
observation is that the RSOS model contains two point-like expectation values instead of
one: the local step density,sn, and the local slope of the surface,vn,

sn(t) = 〈D|(Szn)2|9〉t
vn(t) = 〈D|Szn|9〉t .

(4.7)

The mean-field theory involves two order parameters instead of one. The equations of
motion for these two order parameters,

∂s

∂t
= si(t + 1)− si(t) = 〈D|[(Szi )2, T ]|9〉t (4.8.a) (4.8a)

∂v

∂t
= vi(t + 1)− vi(t) = 〈D|Szi , T ]|9〉t (4.8b)

are again the top of a BBGKY-type hierarchy of coupled differential equations:

∂sx+ 1
2

∂t
= (ph + qv)[d(0, 0)x + d(0, 0)x+1]

−pv[d(−,+)x + d(−,+)x+1] − qh[d(+,−)x + d(+,−)x+1]

+ps [d(−, 0)x − d(0,+)x − d(−, 0)x+1+ d(0,+)x+1]

+qs [d(+, 0)x − d(0,−)x − d(+, 0)x+1+ d(0,−)x+1] (4.9a)
∂hx

∂t
= (ph − qv)d(0, 0)x + pvd(−,+)x − qhd(+,−)x + ps [d(−, 0)x + d(0,+)x ]

−qs [d(+, 0)x + d(0,−)x ]. (4.9b)
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In the mean-field theory the nearest-neighbour step–step correlations factorize. The resulting
equations are not very transparent. Therefore, we first consider the special case where the
surface is spatially uniform, such thats = sn andh = hx do not depend on position. The
mean-field approximation for equation (4.9) then reads

∂s

∂t
= 2cs(1− s)2− 1

2as(s − v)(s + v) (4.10a)

∂hn

∂t
= fg(1− s)2+ 1

4hg(s
2− v2)+ sd(1− s)s. (4.10b)

The equation for the step density contains a ‘mass’ term, which defines a characteristic time
τs . At zero net tilt,v = 0, the step density reaches its stationary value

s0 =
[

1+ 1

2

√(
as

cs

)]−1

(4.11a)

after a characteristic time

τ−1
s = 2

√
ascs. (4.11b)

At time scales larger thanτs the surface grows at a constant average rate

r0 = fg(1− s0)2+ 1
4hgs

2
0 + sd(1− s0)s0. (4.11c)

This means that, although there are two order parameters, only one of them, the local slope
vn, fluctuates at time scales larger thanτs . The full mean-field equation for the step density
reads:
∂s

∂t
= 2cs(1− s)2− 1

2
as(s

2− v2)+ sd ∂
∂x

[(1− s)v] + 1

2
hg

(
v
∂s

∂x
− s ∂v

∂x

)
+
(

1

2
sm − cs

)
∂2s

∂x2
+ 1

4
asv

∂2v

∂x2
+
(
cs − 1

4
as

)
s
∂2s

∂x2
(4.12)

in which all derivatives are discrete. We will now define1 as the deviation from the
stationary value,s = s0 +1. At larger time scales the step density does not behave as an
independent dynamic variable.1 follows local fluctuations in the slope of the surface such
that the right-hand side of equation (4.12) remains equal to zero:

ms1 = δ
(
∂h

∂x

)2

+ ε ∂
2h

∂x2
+ · · · (4.13)

with δ = 1
2as andε = sd(1− s0)− 1

2hgs0. The full equation of motion forhx is complex.
It contains many terms, involving the step density, derivatives of the surface slope, and
combinations of these and their derivatives. At time scales larger thanτs , the step density
is not an independent variable, and can be eliminated using equation (4.13). The equation
for dh/dt then reduces to the deterministic part of the KPZ equation, equation (1.1), with

λ ' 1
2asτs [hgs0− 4fg(1− s0)+ 2sd(1− 2s0)] − 1

2hg

ν ' 1
2sm(1− s0)+ 1

4ass0
(4.14)

and many higher-order terms as well. The above two derivations illustrate that the BCSOS
and RSOS growth models belong to the KPZ universality class. That is hardly a surprise
however. The significance is the identification of an additional order parameter and of the
time scaleτs . At short time scales the step density behaves as an independent dynamic
variable and the KPZ equation description is incomplete. Fortunatelyτs is typically very
short, of the order of only a few time steps.
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5. Skewness in the RSOS model

The phase diagram of the RSOS model seems too large to visualize, but the results of the
previous sections put some order into it. The uncorrelated stationary state (in the subspace
defined by equation (3.15)) and the mean-field theory define a set of characteristic densities
and time scales. The six parameters in equation (3.2) fall into two groups:cs , as , andsm,
are equilibration-type parameters;fg, hg, andsd , are growth-type parameters.

The ratio between the step creation and annihilation probabilities,z = cs/as , controls
the steps density,s. Their productτ−1

s = 2
√
ascs controls the time scale at which the step

density equilibrates. The step mobilitysm is a suitable unit of time. (We setsm = 1.)
KPZ-type scaling is realized at time scales larger thanτs and length scales larger than the
inverse of the step density. This leaves us with an effective 3D phase diagram, characterized
by the growth parameters,fg, hg, andsd . The linear combination

rg = fg(1− s2)+ 1
4hgs

2+ sds(1− s) (5.1)

with s defined in equation (3.15), controls the growth rate. The linear combination

usk = zhg + fg − 4zsd (5.2)

controls the skewness of the stationary state, see equation (3.15). In the disordered subspace,
usk is identically zero as is the skewness. Choosing the RSOS parameters so thatusk 6= 0
takes us away from this plane, and, correspondingly, the skewness is found to be non-zero.
In the zero skewness plane,usk = 0, rg is exactly equal to the growth rate ands is exactly
equal to the step density. The third independent combination offg, hg, andsd controls the
strength of the nonlinear term of the KPZ equation. Equation (4.14) is an approximation
for λ.

The phase diagram of the RSOS model is effectively only 3D, but is still larger than
the one for the KPZ equation, equation (1.1). The RSOS model allows us to control
skewness. Stationary skewness can be turned on in the KPZ equation as well. The
stationary state of equation (1.1) is known exactly in 1D. It is a Gaussian distribution
without any skewness [5, 14, 29]; this is an accident. Additional operators in the equation
should introduce stationary state skewness. The followingλ2 type term is an example of
this

dh

dt
= rg + ν∇2h+ 1

2λ(∇h)2+ λ2(∇2h)2+ η. (5.3)

We performed some (qualitative) Monte Carlo runs atλ2 6= 0 [37] which confirm that
the stationary state is skewed. The BCSOS growth model and theusk = 0 RSOS model
represent special cuts through the extended KPZ equation, where parameters such asλ2 take
special values such that the stationary state lacks skewness. On a qualitative level the role
of λ2 can be understood as follows. In a flat surface, the growth rate in the RSOS model is
determined byfg, and in the KPZ equation byrg. In a sloped surface, the growth rate in
the RSOS model is determined byfg(1− s0)+ sds0, and in the KPZ equation byrg +λ. In
a hilly surface without skewness with densely packed steps, the growth rate in the RSOS
model is determined byhg, and in the KPZ equation, equation (5.3), byrg + λ2.

We hoped that the mean-field theory (section 4) would provide a meaningful estimate
of the usk = 0 space in the generalized KPZ equation. Unfortunately, too many operators
seem to be involved. For example, the analysis of section 4 gives a non-zero value forλ2 in
the BCSOS model. Apparently that value forλ2 is compensated by significant contributions
of other operators such that stationary state skewness remains absent.
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The reverse route might be more promising. The major difference between
equation (5.3) and microscopic models such as the BCSOS and RSOS model is the manner
in which the noise couples to the local surface structure. In the Langevin equation they
are ‘additive’. The probability distribution obeys a Fokker–Planck equation [5, 38]. For
example, in discretized time it is allowed to visualize the time evolution as deterministic
betweent → t + 1

2 and purely stochastic (ballistic deposition-like) betweent + 1
2 → t + 1.

h(t + 1
2) = h(t)+ rg + ν∇2h+ 1

2λ(∇h)2+ λ2(∇2h)2

h(t + 1) = h(t + 1
2)+ η.

(5.4)

In the BCSOS and RSOS model the noise couples much more directly to the local surface
configuration. Correlation effects between steps are more pronounced.

The KPZ fixed point must lie inside the non-skewness subspace. As a rule, fixed points
lie in subspaces where the short distance properties mimic as much as possible the proper
long distance scaling properties. For example, the fixed point of the Ising model on a square
lattice lies in the subspace where the next nearest-neighbour interactions are of the same
order of magnitude as the nearest-neighbour interactions, such that the correlation functions
are rotational invariant not only at large distances, but also at short distances. The cubic
anisotropy is an irrelevant operator and needs to be turned off at the fixed point.

The following numerical results demonstrate that stationary state skewness is indeed
irrelevant in KPZ-type growth. We determine the largest eigenvalues and eigenvectors of
the time evolution operator for system sizes 46 L 6 14. These values are exact, and
allow a detailed finite size scaling (FSS) analysis. This method is identical to conventional
transfer matrix FSS calculations in equilibrium phase transitions, and works equally well
for master equations [17]. We applied this method to several points in the phase diagram,
but we present only our results for the KK model [32]. This is a typical point outside the
usk = 0 subspace.

On a local level skewness implies an imbalance between sharp hill-tops and valleys-

Figure 3. Finite size scaling of the local skewness order parameter,ρsk , equation (5.5), at the
KK point. ρsk represents the density difference between sharp hill-tops and sharp valley-bottoms.
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Figure 4. The scaling exponentx of the third moment,W3 ' ANx , at the KK point. The
drawn line represents finite size scaling estimatesx(N) from the exact values ofW3(N) at
N − 1 andN + 1 for N = 5, 7, . . .13. The broken curve shows estimates forx defined as
x(N) ' x + B/N2 at successive values ofN .

Figure 5. Finite size scaling estimates of the amplitudeA of the third moment,W3 ' ANx , at
the KK point, assuming thatx = 0.4. The broken curve represents the same type of extrapolation
as in figure 4.

bottoms. The quantity

ρsk = d(+,−)− d(−,+)
d(+,−)+ d(−,+) (5.5)

measures the density difference between sharp hill-tops and sharp valley-bottoms.ρsk
converges to a non-zero value at the KK point, as shown in figure 3. This illustrates the
presence of skewness in the stationary state at short distances. The long distance probe for
skewness is the third moment,W3, of the height distribution function, see equation (1.2).

The scaling behaviour ofW3 tells us whether stationary state skewness is present or
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absent at the KPZ fixed point. It should diverge asW3 ∼ L3α if present. Otherwise, we
must incorporate into equation (1.3) the crossover scaling in the skewness directionusk,

Wn(L, t, usk) = bnαWn(b
−1L, b−zt, byskusk) (5.6)

and expand this in smallusk,

Wn(L,∞, usk) ' Lnα[W(1,∞, 0)+ LyskuskW ′(1,∞, 0)+ · · ·]. (5.7)

In the absence of skewness the amplitudeW3(1,∞, 0) of the leading term is equal to zero
and the third moment scales asW3 ' ALx with x = 3α + ysk. Figure 4 demonstrates
that stationary-state skewness is indeed absent at the KPZ fixed point. The exponent
x = 0.4± 0.1 suggests that the skewness crossover exponent is equal toysk = −1 (the
nearest integer). The amplitudeA of the third moment, see figure 5, must be proportional
to usk. The local measure for the skewness,ρsk, in figure 3 should be approximately
proportional tousk as well. We calculated the ratioA/ρsk at several points in the phase
diagram, and find it indeed to be almost a constant.

In conclusion, in this paper we study the phase diagram of the RSOS growth model
in (1+ 1) dimensions. Its phase diagram contains a 4D subspace in which the stationary
state is completely uncorrelated. Familiar models, such as the KK model, lie outside this
subspace. Their stationary states contain additional features, such as skewness. Stationary-
state skewness diverges with system size, but such that the scaling properties are still
described by the KPZ fixed point at zero skewness. The skewness crossover exponent is
equal toysk ' −1.
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